\(\int \frac {\cos (c+d x) \sin ^2(c+d x)}{a+a \sin (c+d x)} \, dx\) [226]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [A] (verification not implemented)
   Maxima [A] (verification not implemented)
   Giac [A] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 27, antiderivative size = 49 \[ \int \frac {\cos (c+d x) \sin ^2(c+d x)}{a+a \sin (c+d x)} \, dx=\frac {\log (1+\sin (c+d x))}{a d}-\frac {\sin (c+d x)}{a d}+\frac {\sin ^2(c+d x)}{2 a d} \]

[Out]

ln(1+sin(d*x+c))/a/d-sin(d*x+c)/a/d+1/2*sin(d*x+c)^2/a/d

Rubi [A] (verified)

Time = 0.05 (sec) , antiderivative size = 49, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.111, Rules used = {2912, 12, 45} \[ \int \frac {\cos (c+d x) \sin ^2(c+d x)}{a+a \sin (c+d x)} \, dx=\frac {\sin ^2(c+d x)}{2 a d}-\frac {\sin (c+d x)}{a d}+\frac {\log (\sin (c+d x)+1)}{a d} \]

[In]

Int[(Cos[c + d*x]*Sin[c + d*x]^2)/(a + a*Sin[c + d*x]),x]

[Out]

Log[1 + Sin[c + d*x]]/(a*d) - Sin[c + d*x]/(a*d) + Sin[c + d*x]^2/(2*a*d)

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 45

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d
*x)^n, x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && IGtQ[m, 0] && ( !IntegerQ[n] || (EqQ[c, 0]
&& LeQ[7*m + 4*n + 4, 0]) || LtQ[9*m + 5*(n + 1), 0] || GtQ[m + n + 2, 0])

Rule 2912

Int[cos[(e_.) + (f_.)*(x_)]*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)
])^(n_.), x_Symbol] :> Dist[1/(b*f), Subst[Int[(a + x)^m*(c + (d/b)*x)^n, x], x, b*Sin[e + f*x]], x] /; FreeQ[
{a, b, c, d, e, f, m, n}, x]

Rubi steps \begin{align*} \text {integral}& = \frac {\text {Subst}\left (\int \frac {x^2}{a^2 (a+x)} \, dx,x,a \sin (c+d x)\right )}{a d} \\ & = \frac {\text {Subst}\left (\int \frac {x^2}{a+x} \, dx,x,a \sin (c+d x)\right )}{a^3 d} \\ & = \frac {\text {Subst}\left (\int \left (-a+x+\frac {a^2}{a+x}\right ) \, dx,x,a \sin (c+d x)\right )}{a^3 d} \\ & = \frac {\log (1+\sin (c+d x))}{a d}-\frac {\sin (c+d x)}{a d}+\frac {\sin ^2(c+d x)}{2 a d} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.02 (sec) , antiderivative size = 38, normalized size of antiderivative = 0.78 \[ \int \frac {\cos (c+d x) \sin ^2(c+d x)}{a+a \sin (c+d x)} \, dx=\frac {2 \log (1+\sin (c+d x))-2 \sin (c+d x)+\sin ^2(c+d x)}{2 a d} \]

[In]

Integrate[(Cos[c + d*x]*Sin[c + d*x]^2)/(a + a*Sin[c + d*x]),x]

[Out]

(2*Log[1 + Sin[c + d*x]] - 2*Sin[c + d*x] + Sin[c + d*x]^2)/(2*a*d)

Maple [A] (verified)

Time = 0.10 (sec) , antiderivative size = 36, normalized size of antiderivative = 0.73

method result size
derivativedivides \(\frac {\frac {\left (\sin ^{2}\left (d x +c \right )\right )}{2}-\sin \left (d x +c \right )+\ln \left (1+\sin \left (d x +c \right )\right )}{d a}\) \(36\)
default \(\frac {\frac {\left (\sin ^{2}\left (d x +c \right )\right )}{2}-\sin \left (d x +c \right )+\ln \left (1+\sin \left (d x +c \right )\right )}{d a}\) \(36\)
parallelrisch \(\frac {8 \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )-4 \ln \left (\sec ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+1-\cos \left (2 d x +2 c \right )-4 \sin \left (d x +c \right )}{4 d a}\) \(58\)
risch \(-\frac {i x}{a}+\frac {i {\mathrm e}^{i \left (d x +c \right )}}{2 d a}-\frac {i {\mathrm e}^{-i \left (d x +c \right )}}{2 d a}-\frac {2 i c}{a d}+\frac {2 \ln \left ({\mathrm e}^{i \left (d x +c \right )}+i\right )}{a d}-\frac {\cos \left (2 d x +2 c \right )}{4 a d}\) \(93\)
norman \(\frac {\frac {2}{a d}+\frac {2 \left (\tan ^{7}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d a}+\frac {4 \left (\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d a}+\frac {4 \left (\tan ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d a}+\frac {6 \left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d a}+\frac {6 \left (\tan ^{5}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d a}}{\left (1+\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )^{3} \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )}+\frac {2 \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )}{a d}-\frac {\ln \left (1+\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{a d}\) \(177\)

[In]

int(cos(d*x+c)*sin(d*x+c)^2/(a+a*sin(d*x+c)),x,method=_RETURNVERBOSE)

[Out]

1/d/a*(1/2*sin(d*x+c)^2-sin(d*x+c)+ln(1+sin(d*x+c)))

Fricas [A] (verification not implemented)

none

Time = 0.27 (sec) , antiderivative size = 36, normalized size of antiderivative = 0.73 \[ \int \frac {\cos (c+d x) \sin ^2(c+d x)}{a+a \sin (c+d x)} \, dx=-\frac {\cos \left (d x + c\right )^{2} - 2 \, \log \left (\sin \left (d x + c\right ) + 1\right ) + 2 \, \sin \left (d x + c\right )}{2 \, a d} \]

[In]

integrate(cos(d*x+c)*sin(d*x+c)^2/(a+a*sin(d*x+c)),x, algorithm="fricas")

[Out]

-1/2*(cos(d*x + c)^2 - 2*log(sin(d*x + c) + 1) + 2*sin(d*x + c))/(a*d)

Sympy [A] (verification not implemented)

Time = 0.32 (sec) , antiderivative size = 53, normalized size of antiderivative = 1.08 \[ \int \frac {\cos (c+d x) \sin ^2(c+d x)}{a+a \sin (c+d x)} \, dx=\begin {cases} \frac {\log {\left (\sin {\left (c + d x \right )} + 1 \right )}}{a d} + \frac {\sin ^{2}{\left (c + d x \right )}}{2 a d} - \frac {\sin {\left (c + d x \right )}}{a d} & \text {for}\: d \neq 0 \\\frac {x \sin ^{2}{\left (c \right )} \cos {\left (c \right )}}{a \sin {\left (c \right )} + a} & \text {otherwise} \end {cases} \]

[In]

integrate(cos(d*x+c)*sin(d*x+c)**2/(a+a*sin(d*x+c)),x)

[Out]

Piecewise((log(sin(c + d*x) + 1)/(a*d) + sin(c + d*x)**2/(2*a*d) - sin(c + d*x)/(a*d), Ne(d, 0)), (x*sin(c)**2
*cos(c)/(a*sin(c) + a), True))

Maxima [A] (verification not implemented)

none

Time = 0.20 (sec) , antiderivative size = 41, normalized size of antiderivative = 0.84 \[ \int \frac {\cos (c+d x) \sin ^2(c+d x)}{a+a \sin (c+d x)} \, dx=\frac {\frac {\sin \left (d x + c\right )^{2} - 2 \, \sin \left (d x + c\right )}{a} + \frac {2 \, \log \left (\sin \left (d x + c\right ) + 1\right )}{a}}{2 \, d} \]

[In]

integrate(cos(d*x+c)*sin(d*x+c)^2/(a+a*sin(d*x+c)),x, algorithm="maxima")

[Out]

1/2*((sin(d*x + c)^2 - 2*sin(d*x + c))/a + 2*log(sin(d*x + c) + 1)/a)/d

Giac [A] (verification not implemented)

none

Time = 0.30 (sec) , antiderivative size = 45, normalized size of antiderivative = 0.92 \[ \int \frac {\cos (c+d x) \sin ^2(c+d x)}{a+a \sin (c+d x)} \, dx=\frac {\frac {2 \, \log \left ({\left | \sin \left (d x + c\right ) + 1 \right |}\right )}{a} + \frac {a \sin \left (d x + c\right )^{2} - 2 \, a \sin \left (d x + c\right )}{a^{2}}}{2 \, d} \]

[In]

integrate(cos(d*x+c)*sin(d*x+c)^2/(a+a*sin(d*x+c)),x, algorithm="giac")

[Out]

1/2*(2*log(abs(sin(d*x + c) + 1))/a + (a*sin(d*x + c)^2 - 2*a*sin(d*x + c))/a^2)/d

Mupad [B] (verification not implemented)

Time = 0.05 (sec) , antiderivative size = 35, normalized size of antiderivative = 0.71 \[ \int \frac {\cos (c+d x) \sin ^2(c+d x)}{a+a \sin (c+d x)} \, dx=\frac {\ln \left (\sin \left (c+d\,x\right )+1\right )-\sin \left (c+d\,x\right )+\frac {{\sin \left (c+d\,x\right )}^2}{2}}{a\,d} \]

[In]

int((cos(c + d*x)*sin(c + d*x)^2)/(a + a*sin(c + d*x)),x)

[Out]

(log(sin(c + d*x) + 1) - sin(c + d*x) + sin(c + d*x)^2/2)/(a*d)